Sequence of steps in ribosome recycling as defined by kinetic analysis.
نویسندگان
چکیده
After termination of protein synthesis in bacteria, ribosomes are recycled from posttermination complexes by the combined action of elongation factor G (EF-G), ribosome recycling factor (RRF), and initiation factor 3 (IF3). The functions of the factors and the sequence in which ribosomal subunits, tRNA, and mRNA are released from posttermination complexes are unclear and, in part, controversial. Here, we study the reaction by rapid kinetics monitoring fluorescence. We show that RRF and EF-G with GTP, but not with GDPNP, promote the dissociation of 50S subunits from the posttermination complex without involving translocation or a translocation-like event. IF3 does not affect subunit dissociation but prevents reassociation, thereby masking the dissociating effect of EF-G-RRF under certain experimental conditions. IF3 is required for the subsequent ejection of tRNA and mRNA from the small subunit. The latter step is slower than subunit dissociation and constitutes the rate-limiting step of ribosome recycling.
منابع مشابه
Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast.
Although well defined in bacterial systems, the molecular mechanisms underlying ribosome recycling in eukaryotic cells have only begun to be explored. Recent studies have proposed a direct role for eukaryotic termination factors eRF1 and eRF3 (and the related factors Dom34 and Hbs1) in downstream recycling processes; however, our understanding of the connection between termination and recycling...
متن کاملThe kinetic mechanism of bacterial ribosome recycling
Bacterial ribosome recycling requires breakdown of the post-termination complex (PoTC), comprising a messenger RNA (mRNA) and an uncharged transfer RNA (tRNA) cognate to the terminal mRNA codon bound to the 70S ribosome. The translation factors, elongation factor G and ribosome recycling factor, are known to be required for recycling, but there is controversy concerning whether these factors ac...
متن کاملRibosome recycling: An essential process of protein synthesis.
A preponderance of textbooks outlines cellular protein synthesis (translation) in three basic steps: initiation, elongation, and termination. However, researchers in the field of translation accept that a vital fourth step exists; this fourth step is called ribosome recycling. Ribosome recycling occurs after the nascent polypeptide has been released during the termination step. Despite the rele...
متن کاملRli1/ABCE1 Recycles Terminating Ribosomes and Controls Translation Reinitiation in 3′UTRs In Vivo
To study the function of Rli1/ABCE1 in vivo, we used ribosome profiling and biochemistry to characterize its contribution to ribosome recycling. When Rli1 levels were diminished, 80S ribosomes accumulated both at stop codons and in the adjoining 3'UTRs of most mRNAs. Frequently, these ribosomes reinitiated translation without the need for a canonical start codon, as small peptide products predi...
متن کاملPlant ribosome recycling factor homologue is a chloroplastic protein and is bactericidal in escherichia coli carrying temperature-sensitive ribosome recycling factor.
We have isolated a protein, mature RRFHCP, from chloroplasts of spinach (Spinacia oleracea L.) that shows 46% sequence identity and 66% sequence homology with ribosome recycling factor (RRF) of Escherichia coli. RRF recycles ribosomes through disassembly of the posttermination complex. From the cDNA analysis and from the amino-terminal sequencing of the isolated protein, the mature RRFHCP was d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cell
دوره 18 4 شماره
صفحات -
تاریخ انتشار 2005